Flexible flux plane simulations of parasitic absorption in nanoplasmonic thin-film silicon solar cells
نویسندگان
چکیده
Photovoltaic light trapping theory and experiment do not always clearly demonstrate how much useful optical absorption is enhanced, as opposed to parasitic absorption that cannot improve efficiencies. In this work, we develop a flexible flux plane method for capturing these parasitic losses within finite-difference time-domain simulations, which was applied to three classical types of light trapping cells (e.g., periodic, random and plasmonic). Then, a 2 μm-thick c-Si cell with a correlated random front texturing and a plasmonic back reflector is optimized. In the best case, 36.60 mA/cm2 Jsc is achieved after subtracting 3.74 mA/cm2 of parasitic loss in a 2-μm-thick c-Si cell slightly above the Lambertian limit. © 2015 Optical Society of America OCIS codes: (350.4238) Nanophotonics and photonic crystals; (350.6050) Solar energy. References and links 1. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007). 2. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Prog. Photovolt.: Res. Appl. 10, 235–241 (2002). 3. V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010). 4. X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs solar cells operating close to the shockley-queisser limit,” IEEE J. Photovolt. 3, 737–744 (2013). 5. X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the shockley-queisser limit in gaas solar cells,” in “38th Photovoltaic Specialists Conference (PVSC),” (IEEE, 2012), pp. 002117–002121. 6. H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010). 7. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, “Enhancement of light trapping in thin-film hydrogenated microcrystalline si solar cells using back reflectors with self-ordered dimple pattern,” Appl. Phys. Lett. 93, 143501 (2008). 8. H. Sai and M. Kondo, “Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,” J. Appl. Phys. 105, 094511 (2009). 9. G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009). 10. H. Tan, R. Santbergen, A. H. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012). 11. H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, and A. H. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013). 12. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982). 13. S. E. Han and G. Chen, “Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett. 10, 4692–4696 (2010). 14. V. E. Ferry, A. Polman, and H. A. Atwater, “Modeling light trapping in nanostructured solar cells,” ACS Nano 5, 10055–10064 (2011). 15. Y. Zhang, Z. Ouyang, N. Stokes, B. Jia, Z. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012). 16. A. Tamang, A. Hongsingthong, P. Sichanugrist, V. Jovanov, M. Konagai, and D. Knipp, “Light-trapping and interface morphologies of amorphous silicon solar cells on multiscale surface textured substrates,” IEEE J. Photovolt. 4, 16–21 (2013). 17. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12, 2894–2900 (2012). 18. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express 19, 128–140 (2011). 19. O. Isabella, S. Solntsev, D. Caratelli, and M. Zeman, “3-D optical modeling of thin-film silicon solar cells on diffraction gratings,” Prog. Photovolt.: Res. Appl. 21, 94–108 (2013). 20. R. Dewan, V. Jovanov, C. Haase, H. Stiebig, and D. Knipp, “Simple and fast method to optimize nanotextured interfaces of thin-film silicon solar cells,” Appl. Phys. Express 3, 092301 (2010). 21. K. Jäger, M. Fischer, R. A. van Swaaij, and M. Zeman, “Designing optimized nano textures for thin-film silicon solar cells,” Opt. Express 21, A656–A668 (2013). 22. V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-si: H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett. 95, 183503 (2009). 23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the fdtd method,” Comp. Phys. Comm. 181, 687–702 (2010). 24. R. S. Sesuraj, T. Temple, and D. Bagnall, “Optical characterisation of a spectrally tunable plasmonic reflector for application in thin-film silicon solar cells,” Solar Energy Mat. and Solar Cells 111, 23–30 (2013). 25. H. Chung, K. Jung, X. Tee, and P. Bermel, “Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function,” Opt. Express 22, A818–A832 (2014). 26. T. G. Jurgens and A. Taflove, “Three-dimensional contour FDTD modeling of scattering from single and multiple bodies,” IEEE Trans. Antennas Propag. 41, 1703–1708 (1993). 27. T. Jurgens, A. Taflove, K. Umashankar, and T. Moore, “Finite-Difference Time-Domain modeling of curved surfaces,” IEEE Trans. Antennas Propag. 40, 357–366 (1992). 28. N. Kaneda, B. Houshmand, and T. Itoh, “Fdtd analysis of dielectric resonators with curved surfaces,” IEEE Trans. Microwave Theory Tech. 45, 1645–1649 (1997). 29. E. Neufeld, N. Chavannes, T. Samaras, and N. Kuster, “Novel conformal technique to reduce staircasing artifacts at material boundaries for fdtd modeling of the bioheat equation,” Phys. Medicine and Biology 52, 4371 (2007). 30. E. Hallynck and P. Bienstman, “Photonic crystal biosensor based on angular spectrum analysis,” Opt. Express 18, 18164–18170 (2010). 31. J. Nadobny, D. Sullivan, P. Wust, M. Seebaß, P. Deuflhard, and R. Felix, “A high-resolution interpolation at arbitrary interfaces for the fdtd method,” IEEE Trans. Microwave Theory Tech. 46, 1759–1766 (1998). 32. M. T. Bettencourt, “Flux limiting embedded boundary technique for electromagnetic fdtd,” J. Comp. Phys. 227, 3141–3158 (2008). 33. H. Chung, S. Ha, J. Choi, and K. Jung, “Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation,” Int. J. Electronics 102, 1218–1228 (2015) 34. V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si: H solar cells,” Nano Lett. 11, 4239–4245 (2011). 35. F.-J. Haug, T. Söderström, M. Python, V. Terrazzoni-Daudrix, X. Niquille, and C. Ballif, “Development of micromorph tandem solar cells on flexible low-cost plastic substrates,” Solar Energy Mat. and Solar Cells 93, 884–887 (2009). 36. H. Sai, K. Saito, N. Hozuki, and M. Kondo, “Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells,” Appl. Phys. Lett. 102, 053509 (2013). 37. L. Sivec, B. Yan, G. Yue, J. Owens-Mawson, J. Yang, and S. Guha, “Advances in light trapping for hydrogenated nanocrystalline silicon solar cells,” IEEE J. Photovolt. 3, 27–34 (2013). 38. R. Ren, Y. Guo, and R. Zhu, “Design of a plasmonic back reflector for silicon nanowire decorated solar cells,” Opt. Lett. 37, 4245–4247 (2012). 39. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat. 9, 205–213 (2010). 40. P. Spinelli, V. Ferry, J. Van de Groep, M. Van Lare, M. Verschuuren, R. Schropp, H. Atwater, and A. Polman, “Plasmonic light trapping in thin-film si solar cells,” J. Opt. 14, 024002 (2012). 41. Z. Yu, A. Raman, and S. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys. A 105, 329–339 (2011). 42. Z. Yu, A. Raman, and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012). 43. K. Knight, Mathematical Statistics (CRC Press, Boca Raton, Florida, 1999).
منابع مشابه
Design of Silicon Nano-Bars Anti-Reflection Coating to Enhance Thin Film Solar Cells Efficiency
In this paper a novel anti-reflection (AR) coating based on silicon nano-bars is designed and its impact on the performance of crystalline silicon (c-Si) thin-film solar cells is extensively studied. Silicon nano-bars with optimized size and period are embedded on top of the active layer, under a 100nm Si3N4 layer. As a result of the proposed layer stack, an inhomogeneous intermediate layer wit...
متن کاملEnhanced absorption of thin-film photovoltaic cells using an optical cavity
We show via numerical simulations that the absorption and solar energy conversion efficiency of a thin-film photovoltaic (PV) cell can be significantly enhanced by embedding it into an optical cavity. A reflective hemi-ellipsoid with an aperture for sunlight placed over a tilted PV cell reflects unabsorbed photons back to the cell, allowing for multiple opportunities for absorption. Ray tracing...
متن کاملAdvances in Thin-Film Si Solar Cells by Means of SiOx Alloys
The conversion efficiency of thin-film silicon solar cells needs to be improved to be competitive with respect to other technologies. For a more efficient use of light across the solar spectrum, multi-junction architectures are being considered. Light-management considerations are also crucial in order to maximize light absorption in the active regions with a minimum of parasitic optical losses...
متن کاملImproving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملSimulations of solar cell absorption enhancement using resonant modes of a nanosphere array
We propose an approach for enhancing the absorption of thin-film amorphous silicon solar cells using periodic arrangements of resonant dielectric nanospheres deposited as a continuous film on top of a thin planar cell. We numerically demonstrate this enhancement using 3D full field finite difference time domain simulations and 3D finite element device physics simulations of a nanosphere array a...
متن کامل